
Mechanical Engineering Quiz 002 (Mixed)

Quiz Instructions

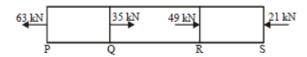
- Before attempting, carefully read the question text.
- Then choose the correct answer.
- Click on "Submit" to confirm your answer.
- Use the **Question List** in the upper left corner to jump to a certain question.
- **1.** Consider the loaded beam as shown in the figure below. Determine the portion of the beam which is subjected to pure bending.

- A) DE
- B) CD
- C) BD
- D) AE
- **2.** Calculate the total angle of twist for a stepped shaft which is subjected to the torque (T) as shown in the figure below.

- A) $\frac{Tl}{\pi Gd^4}$
- B) $\frac{66Tl}{\pi Gd^4}$
- C) $\frac{Tl}{66Gd^4}$
- D) $\frac{36Tl}{\pi Gd^4}$
- **3.** A steel rod whose diameter is 2 cm and is 2 m long, experiences heating of temperature 30° C to 150° C. The coefficient of thermal expansion is $\alpha = 12 \times 10^{-6}$ / $^{\circ}$ C and Young's modulus is 200 GPa. If the rod has been restricted to its original position, then the thermal stress (MPa) developed will be ______.
 - A) 234
 - B) 256
 - C) 288
 - D) 300

- **4.** If the equivalent torque in a shaft is 500 Nm and the bending moment is 300 Nm. Calculate the magnitude of the required torque and the equivalent bending moment.
 - A) 500 Nm
 - B) 400 Nm
 - C) 400 Nm and 400 Nm
 - D) 300 Nm and 400 Nm
- **5.** Choose the CORRECT option for the equation of elongation of a uniform rod having length L due to the self weight W.

A)
$$\delta = \frac{WL}{2AE}$$


B)
$$\delta = \frac{2WL}{AE}$$

C)
$$\delta = \frac{WL}{AE}$$

- D) none of these
- **6.** The conditions for the thermal stress in a body are given below.
- (A) It is the function of coefficient of thermal expansion.
- (B) It is the function of temperature rise.
- (C) It is the function of modulus of elasticity.

Which of the following is the CORRECT answer?

- A) A and B only
- B) A and C only
- C) B and C only
- D) All option are correct
- **7.** A cross sectional bar of area 700 mm² is subjected to an axial load as shown in the figure below. What is the value of stress (MPa) in the section RS?

- A) 30
- B) 40
- C) 50
- D) 60
- **8.** What will be the change in length (mm) of a steel bar having a square cross section of dimension 40 mm x 40 mm, which is subjected to an axial compressive load of 250 kN. If the length of the bar is 4 m and modulus of elasticity is E = 250 GPa?
 - A) 2.5

B) 1.25
C) 2
D) 1.5
9. If the diameter of the column is reduced by 30%, then what will be the change in the Euler's buckling load (in %)?
A) 25
B) 50
C) 75
D) 100
10. If the stress acting on a point is in the three dimensions, then what is the number of components in a stress tensor required for defining that stress?

Answer Keys

Question	Answer
1	С
2	D
3	С
4	В
5	Α

Question	Answer
6	D
7	Α
8	Α
9	С
10	D